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1. INTRODUCTION 

At ANPA 9, 10, 11 and 12 I attempted to give rigorous mathematical jus- 

tification for the discrete physics model of relativistic quantum scattering theory 

sketched out in what has become the basic published reference ‘I]. For various 

technical reasons, I failed to convince the audience that I had achieved this goal. 

There are deep philosophical reasons underlying the controversy. I now realize that 

these might have prevented acceptance of my approach even if the mathematics 

had turned out to be impeccable. These issues turn on the differences in objective 

between the West Coast “Bolsheviks” - as Clive [Kilmister] has dubbed us- and 

the English “Mensheviks”. We believe that the philosophical position underlying 

discrete physics has been carefully spelled out by Christoffer [Gefwert]“] and - 

in careful coordination with that paper - by David [McGoveran][31; we will not 

repeat that foundational discussion here. 

Prior to ANPA 12, I circulated a technical noteL4’ on various salient points 

of disagreement to those of us who are actively engaged in trying to reconstruct 

quantum mechanics, and to some critics of our efforts. This provoked a position 

paper “of the same logical type” from Bastin and Kilmister, presented at ANPA 12 

and revised for these Proceedings. So far as I am concerned, none of this technical 

discussion has affected any of the physical conclusions about the consequences 

of adopting the discrete physics approach to relativistic quantum mechanics and 

relativistic cosmology presented in FDP, DP and subsequent papers. Hopefully 

this controversy will eventually lead to a technical solution that cannot be faulted 

either from a mathematical perspective or from any philosophical point of view 

which shares our basic modeling methodology. 

Unfortunately as I go to press this result has not been achieved. Fortunately 

ANPA is a place where I can present ‘work in progress” and expect constructive 

and useful criticism. I trust you will read the following incomplete development in 

that spirit. 



In Chapter 2 I follow the route from bit-strings to quaternions as far as I can. As 

Stan Gudder pointed out to me last spring, to complete this work would require me 

to model “vector addition”. I now realize that this necessarily “expands the space” 

in which the finite vectors with which we start operate, and hence must involve 

concatenation as well as discrimination. Thus it has more to do with cosmology 

than the particle physics which is my immediate focus. In thinking about this 

I finally realized that for particle physics (or minimally for finite particle number 

relativistic scattering theory) all I probably need is rotations and boosts, not vector 

addition. Further thought led me to try modeling quantum numbers directly with 

less reliance on “geometric” visualizations. I have made some progress along these 

lines, and report it in Chapter 3. 

2. BIT-STRING COORDINATES 

2.1. GREIDER’S QUATERNIONS 

Our objective in this chapter is to map bit-strings onto quaternion coordinates 

which are integral, or rational. Our strategy is to construct the ingredients used 

by Greider [51 in his systematic development of the scalars, 4-vectors, bivectors 

trivectors and pseudoscalars needed in relativistic quantum field theory. We choose 

his approach because he has demonstrated that ambiguities in formulating the free 

field conservation laws using the tensor notation are uniquely resolved within his 

formalism; further, his approach can readily be extended to general relativity. He 

starts from the basic bivector product 

epe,+e,ep=O;p#v; ~,~~0,1,2,3 (2.1) 

and the scalar products 

.I2 = .z2 = es2 = -eo2 = +1 (2.2) 
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He defines a 4-vector v by its projection onto this basis, i.e. 

v := v”eO + de1 + v2e2 + v3e3 = (d, v2, v3; 71’) = (i?; v”) (2.3) 

from which the Lorentz-invariant (space-like positive) 4-vector product 

CT2 := a’. c-a”bo (2.4) 

follows immediately. Note Greider’s arbitrary choice of a space-like metric for o2 

rather than the time-like positive metric 

72 := -a2=aobo-z.g (2.5) 

which I prefer. We note here that Phipps”’ points out that “time-dilation” and 

“mass-increase” for time-like intervals connected to a single particle have ample 

empirical confirmation, but that “length contraction” has no corresponding direct 

empirical evidence to support it. Clearly evidence against the “Lorentz contrac- 

tion” of rigid rods would prevent us from using the facile o2 = -TV assumption we 

employ in this paper. 

Greider remarks that “The four basis vectors ecL are part of the 16 linearly 

independent elements that form the (Dirac) Cd algebra, and the VP are scalar 

coefficients. The other 12 elements of Cd are obtained by multiplication of the 

ep;...” 

In the past I have sometimes simplified my notation a(S) for a bit-string of 

length S by dropping the dependence on S. Since this could create confusion with 

Greider’s notation for a 4-vector, I will try not to do so in what follows. In order 

to distinguish Greider’s space-like metric (Eq. 2.3, 2.4) from the standard notation 

in momentum space for on-shell 4-vectors p in momentum space PI we write 

p := (p”,p1,p2,p3) = (E,p3; p2 = E2 +p’= rn2 

Although our strategy for mapping bit-strings onto quaternions works in a 

formal sense, we do not in this way succeed in achieving Poincarlacutee invariance 
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or vector addition. As we will show in the next chapter, bit-string operations do 

suffice to describe finite and discrete rotations and boosts using strings of fixed 

length. Further, bit-string concatenation allows us to define multiplication of a 

single bit-string by positive and negative integers and their combinations, including 

the scalar “0”. This makes our coordinate desciption meaningful, provided we can 

supply a macroscopic (“laboratory”) definition of the directions of the vector basis 

strings. I believe this will suffice for the physics modeling I have done and intend 

to do. I suspect that my failure to construct the full vector addition in our theory 

has deep roots, but these cannot be explored in this paper. 

2.2. BIT-STRINGS 

We specify a bit-string 

a(S) := (byb;...bi . . . . bt) (24 

by its S ordered elements 

bz E 0,l; s E 1,2, . . . . 5’; O,l, . . . . S E ordinal integers (2.7) 

and its norm by 

[a(S)1 := a(S) := I&b~ (2.8) 

This is the usual Hamming measure for bit-strings. Define the null string by O(S), 

bt := 0 for all s and the anti-null string by l(S), bi := 1 for all s. 

Define discrimination by 

b;@ := (b; - b;)2; a(S) $ b(S) := (.... bz@* . . . . b:‘*) = b(S) $ a(S) cw 

Note that this differs from the standard definition of symmetric digerence, +2, 

XOR, OREX,... in that our symbols “O”, “1” are already specified to be ordinal 
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integers in some system with maximal ordinal Nx specified in advance, rather than 

“existence symbols” or “bits”. For ours, or for the standard definition, it follows 

that 

Define a(S) by 

a(S) Cl3 a(S) = O(S); a(S) $0(S) = a(S) (2.10) 

Z(S) := a(S) $1(S); h ence a(S) $ ii(S) $1(S) = O(S) (2.11) 

As noted above, when we employ Greider’s bold-face notation for 4-vectors, it is 

important always to include the string length S. It is also important when the 

norm and the anti-null string are involved. In particular 

Il(S)j = s; la(S)( = s - a(S) (2.12) 

If n strings combined by discrimination in all the possible ways taking them 

1) 2) 3) . . . . ) n at a time do not produce the null string, they are said to be discrim- 

inately independent, or d.i. If these combinations also never yield the anti-null 

string, they are said to be discriminately and anti-discriminately independent, or 

d.i.a.d. 

For two strings a(Sa), b(S b we define concatenation (II) by ) 

/$ib .- b” 4lb .- i, iE1,2 ,..., Sa; bk :=b!, jE1,2 ,..., Sb,k=S,+j 

a(Sa)llb(Sb) := (...... bi’lb . . . . . b$F+SL) (2.13) 

= (...b; . . . . bsJl( . . . . b;...bsJ 

Hence 

~(52) + b(Sb) = Ia(&)llb(Sb)l = Ib(Sb)lla(Sa)l (2.14) 

but note that in general a(&)jjb(Sb) # b(Sb)lla(Sa). 
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2.3. AMSON INVARIANCE 

My tactical motivation for mapping bit-strings onto quaternions is explained 

at the start of Sec. 2.1; basically, Greider’s approach to the free field equations 

provides us with a familiar point of departure, which we can qualify as we go along. 

My earlier philosophical motivation for mapping bit-strings onto quaternions came 

primarily from AmsonL8’ invariance. This started long ago when I found it useful 

to obtain “antiparticles” by discriminating with the anti-null string. 

It is often emphasized in discussions of bit-strings that so long as the two 

symbols used in the ordered string are distinct, the choice of what symbols to use 

is arbitrary. Hence there is a basic symmetry in the representational starting point 

of a theory modeled using bit-strings. John [Amson] emphasized this fact by raising 

the basic question of where these two symbols come from in the first place. His 

answer was the “Bi-Orobourous”, which is supposed to make them self-contained. 

If we define “discrimination” by 

a$a:=O=b$b; a$b:=l=b$a 

where a and b are the two arbitrary, distinct symbols already mentioned, it is clear 

that the two additional symbols “0” and “1” are also arbitrary. Using them to 

replace a and b in a system whose notation is still fluid can be dangerous. If I 

understand John [Amson] correctly, keeping one pair fixed and interchanging the 

other pair changes one system into its “dual” system. Then, if I am still on track, 

this basic symmetry can be collapsed by taking either the a and b or the 0 and 

1 as the completed hierarchy in one representation and its dual representation as 

the initial arbitrary, distinct symbols and starting all over again. 

Once we have collapsed the notation by replacing a and b by 0 and 1, we ob- 

tain the usual XOR of computer practice in which the symmetry between the two 

symbols is broken, in that the “0” in the definition refers to the symbols being 
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“the same” and the “1” to their being “different”. I suspect that this asymme- 

try is related to Parker-Rhodes’ starting point in Agnosia[” and The Inevitable 

Universe’lol, where he distinguishes between the ontological statement “something 

exists” and the information-theoretic statement, “this ontological statement con- 

veys no information”. 

I make my definition of discrimination still more concrete by defining bit- 

strings as strings of dichotomous symbols ordered by the ordinal integers. I take 

the normal arithmetic properties of the integers - both with regard to addition and 

to multiplication - as “given” up to some integer fixed in advance. By identifying 

the dichotomous symbols in the strings - the “0” and “1” - as ordinal integers, 

I make what I claim to be a consistent step, provided I define discrimination by 

b iab := (b; - bt)2; b; E 0,l; s E 1,2,3, . . . . . S 

rather than using the “symmetric difference ” definition given above, or some 

binary equivalent. This possibility was, like many other things, one that Clive 

[Kilmister] and I ran into together when working in his office at King’s nearly a 

decade ago. I reiterate here my contention that I see no need for deriving the 

integers from a more primitive starting point so long as my aim is to model the 

practice of physics in such a way as to construct a consistent finite and discrete 

relativistic quantum mechanics. The philosophical point I wish to make about 

either my approach, or John [Amsonl’s, or Fredrick [Parker-RhodesI’s, or (so far as 

I can see) Clive [Kilmisterl’s and Ted [Bastin] ‘s, is that there is a tension between 

the broken symmetry that is an inevitable part of the hierarchy construction as 

usually presented and the initial indistinguishable duality. I find this contrast 

fruitful rather than paradoxical. 

One has a choice here. The asymmetric structure clearly has a great deal to 

do with the hierarchical ordering of the scale constants. I claim to have gone a 

considerable ways toward using this structure to interpret the elementary particle 

quantum numbers, coupling constants and mass ratios. However, conventional 
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elementary particle physics cannot be formulated without ending up with a theory 

in which CP7 is necessarily unbroken, even though C,P, CP (and hence presumably 

7 ) are broken both empirically and in the standard model of quarks and leptons. 

This was my motivation for invoking “Amson Invariance” a long time ago as the 

symmetry in our theory which allows us to model this empirical situation. Early 

on I used discrimination with the anti-null string to distinguish “particles” from 

“anti-particles”. In the current paper I show that my definition of coordinates 

provides all these discrete symmetries. I am working out the details of how this 

relates, quantitatively, to the way the coupling constants break these symmetries 

in a manner consistent with experiment. 

One important aspect of the theory as I am formulating it is that one has the 

choice between either breaking CP7 or requiring it. This already gives our ap- 

proach a critical advantage over conventional theories. A colleague of mine (Helen 

Quinn) asserts “All relativistic quantum field that anyone has written down are 

Lagrangian field theories.” Further, a standard textbook by Itzykson and Zubert”’ 

states that “In any quantum field theory derived from a Lagrangian, the PCT 

theorem holds”; they provide a proof and references to the literature. Max Dres- 

den informs me that the theorem applies only to local Lagrangian theories, and 

that non-local theories have more freedom. Non-local theories would, necessarily, 

introduce a dimensional parameter for which there is no current experimental mo- 

tivation. In contrast, the hierarchy construction necessarily breaks CP7 symmetry 

in any application along the lines I have pioneered; the breaking parameter is part 

of the theory, i.e. one part in 2127 + 136. 

Hamming measure (number of l’s in a string) necessarily breaks “Amson in- 

variance” . This fact motivates dropping Hamming measure in favor of a symmetric 

definition by the way we introduce metric coordinates (see below). In terms of Mc- 

Goveran’s definition of attribute distance, what we do is to use some string with 

an equal number of O’s and l’s as our reference ensemble. (Hamming measure uses 

the null string as the reference ensemble.) This restricts us to using basis strings 

of even length. We find this to be a good move, because it gives us a simple way 
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to discuss CP7 invariance (see below). 

2.4. ORTHOGONAL BIT-STRING BASIS VECTORS 

In order to give meaning to a vector basis for vectors with integer coefficients 

constructed from bit-strings we start with a set of D d.i.a.d. vector basis strings of 

the same length S which we call Ba(S); cr E 1’2, . . . . . D. Note that, in contrast with 

the d.i. basis strings used in the construction of the four levels of the combinatorial 

hierarchy - which by definition exclude the null string - we exclude the anti-null 

string as well. This suffices for S-vectors, but for 4-vectors we adjoin the anti-null 

string explicitly as one of the basis vectors: 

Br,(S) := l(S) (2.15) 

Once we have selected a d.i.a.d. basis, our next step in defining bit-string 

addition is to construct a meaning for multiplying a basis string by a positive 

integer. 

2B,(S) := B,(2S) := BU(S)IIBa(S) (2.16) 

and hence by recursion 

(n + l)&(S) := B,(S)IIB,(nS) = B,(nS)IIB,(S) = B,(S)(n + 1) (2.17) 

Note that 

InBa(S)l = IBe = nIB( = n B,(S) = B,(nS) = f&(S) n (2.18) 

Consequently we have indeed succeeded in defining the multiplication of a basis 

string by a positive integer. 

In order to extend this definition to negative integers and multiplication by 

zero, We define addition, +, and subtraction,-, of a basis strings as follows 

10 

, , 



0 := 0 B,(S) := Bm(S) + &(S) (2.19) 

Hence, since “-“is to have the usual meaning as the inverse of “+“, 

B,(S) = -&(S) := -Ba(-S) (2.20) 

and by recursive definition similar to Eq. 2.16 

(m f n)B,(S) = ml%(S) f nB,(S) = B,(mS)IIB,(fnS) 

= &(TmS)IIB,(-nS) = -B,(-S)(m f n), etc. (2.21) 

We have already restricted ourselves to a d.i.a.d. basis because of our de- 

sire to preserve Amson invariance; this motivation also requires us to restrict 

our vector basis strings to strings of even length. For strings of even length (i.e. 

$ E positive integer), we call our vector basis strings EP(S),~ E 0,1,2,3... and 

require that 

Es(S) := l(S); IEi(S)l = g, i E 1,2,3... 

Then we can define the components up of any string of length S by 

(2.22) 

aP := l%(S) $ E,(S)1 - S/2 (2.23) 

from which it follows that 

(E/y = ;; (Ei$ = 0 = (IgO) i E 1,2,3... (2.24) 

Thus, any “spatial” vector basis string Ei(S) can be said to be orthogonal to the 

“temporal” vector basis string Es(S). I n order to have orthogonal coordinates in 
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a D + 1 space, we must obviously require that 

(Ei)j =Sijt, i,j E 1’2 ,..., D (2.25) 

We discuss below how this requirement can be met. Once we have established an 

orthogonal basis of dimensionality D using strings of length S, we can extend the 

system to include a larger number of coordinates by the “length multiplication” 

described at the end of the last section. This is simply an (upward) scale change 

because once this is applied to all the vector basis strings, it is easy to show that 

(na(S))p = (a(nS))p = nap (2.26) 

Our mapping of basis vector strings onto basis vectors can now be written as 

and for repetitive vector basis strings 

$w + e, 

(2.27) 

(2.28) 

2.5. How MANY DIMENSIONS? 

McGoveran (FDP, Th eorem 13) has shown that any discrete space of D “homo- 

geneous and isotropic” dimensions synchronized by a universal ordering operator 

can have no more than three indefinitely continuable dimensions; three separate 

out and the others “compactify” after a surprisingly small number of constructive 

operations. The proof starts from the assumption that we have D independent gen- 

erators of sequences of two dicotomous symbols. The sequences share a common 

ordinal integer n which is “0” when the sequences start (“initial synchronization”) 

and which counts the number of symbols which have been added sequentially to 

each sequence; the basic assumption is that whatever method we use to gener- 

ate the sequences cannot allow any subset of the d = 1’2, . . . . D generators to be 

distinguished from any of the rest other than by this arbitrary numbering. 
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For example, we could run the generators until we had produced sequences all 

D of which are discriminately independent at a length which we could call ~VL, 

the label length. Then which we call d = 1’2’3, . . . . D is an arbitrary replacement 

for these generated sequences; this is the way part of PROGRAM UNIVERSE I 

operates (cf DP). In Parker-Rh d o es t erminology, these D sequences are indistin- 

guishables with cardinality “D” and ordinality “1”. In our context, this is what we 

mean by “homogeneous and isotropic dimensions”. This allows us to invoke a result 

proved by Fellernzl for D independently generated Bernoulli sequences (i.e. arbi- 

trary sequences of the symbols 0, 1). Feller proved that the probability that after n 

synchronized trials all will have accumulated the same number of “1” ‘s is less than 

n-~(D-l). [Th e exact expression for this probability is &EF=l(&)D.] Con- 

sequently the probability of this criterion being met vanishes like n -g for D = 4, 

and increasingly rapidly for higher numbers of independently generated sequences. 

McGoveran met various objections to this interpretation in Ref. 4, Appendix II. 

For completeness, I quote the relevant passage here. 

“Now regarding the dificulty of giving finite combinatorial meaning to Feller’s 

Theorem vis-a-vis statistically unlikely circumstances. While I cannot avoid the 

statistical character of the proof, I can remove the problem of combinatorial inter- 

pretation. This problem arises because of the way Feller invokes convergence and 

diflerence theorems and therefore limit theorems. The asymptotic continuation of 

the combinatorial terms of the series seems to be essential. However, one need not 

resort to this method to see the validity of the theorem. 

“In particular, suppose that a 3 + n space has been generated up to some fi- 

nite extent. Because of the probabilities involved, the most dense constructible 

l-dimensional d-subspace will have a denser sequence of metric points than ev- 

ery constructible %-dimensional d-subspace, and the most dense ?&dimensional d- 

subspace denser than every 3-dimensional d-subspace. However, this situation 

reverses at d-dimensions so that the most dense 4 + n-dimensional d-subspaces 

are now ordered as less dense than every 5+n-dimensional d-subspaces (where n is 

an element of 0, l7 2, . . .)! This means that every 4 + n-dimensional d-subspace 
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is separable into a number of isotropic and homogenous 1, 2, and 3-dimensional 

d-subspaces, but NOT into isotropic and homogenous 1, 2, 3 and 4--dimensional 

d-subspaces. 

“Again, there might be some (and indeed perhaps a large number) of “excep- 

tional” generators of homogeneous and isotropic m-dimensional d-subspaces with 

n > 3. The algorithm for this generator would be deterministic. However, it is 

my claim that no such deterministic algorithm can be correct for other reasons as 

explained regarding “arbitrariness” and the very definition of ordering operator in 

Foundations: the complexity of the algorithm for an ordering operator is such that 

it cannot be given a full interpretation within the generated system. 

‘(For PU, the generators of our d-space, therefore, are of such complexity that 

the “next” metric mark cannot be represented in terms of all those generated so far. 

This precludes the possibility that the generation of the space is deterministic in the 

way required: namely that we can predict deterministically from the d-space gener- 

ated so far and the distribution of metric marks where/when the next metric mark 

will be generated. Every c-dimensional d-space with n > 3 is not algorithmicly 

extensible within the system. It is therefore subject only to statistical characteriza- 

tion. I realize this is not a formal argument and hope to make it formal in my next 

major e$ort: Foundations II. 

“Not long ago I questioned Pierre’s reference to “McGoveran’s Theorem” re- 

garding there being only three conserved unique quantum numbers (which I take 

to mean that only three quantum units or parameters are possible for global de- 

scriptions and what you mean by Pierre’s conservation theorem). I subsequently 

convinced myself that it was OK7 with the fourth number being only a locally us- 

able number. If this fourth number is color, we have “color confinement” and 

“asymptotic freedom”. Conservation is not the issue here. (Indeed I insist that 

nothing ever gets “conservedn but that similar structures are recursively generated 

so that a “conserved property” is found to have the same “vaIuen over some causal 

trajectory-see ANPA 11 paper.) 
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“The argument is simple. PU generates strings with arbitrary quantum num- 

bers (QN’s hereinafter) selected from all those allowed. We can imagine a gen- 

eration which orders the sets of strings with QN’s of each type: a set of strings 

ordered by spin QN, another by angular momentum, etc. We now synchronize the 

generators so that a d-space is constructed with a diagonal of n strings, one with 

each of these &N’s and therefore n-dimensions. Feller’s Theorem now applies. 

“I agree that synchronization is the bridge between combinatorics and geometry 

- at least that is why and how I have used it.” 

This theorem has a powerful corrolary in our bit-string coordinate context. Eq. 

2.22 identifies the vector basis string Es(S) with the unique anti-null string. If we 

identify this with the time direction, then all strings which have the same time 

coordinate t = a’(t) have the same Hamming measure 

Ia(S; t)l = t + z (2.29) 

But strings with the same Hamming measure satisfy the condition required by 

McGoveran’s Theorem in Feller’s context (i.e. all have the same number of “1” 

‘s). Consequently, any simultaneous (i.e. same “t”) points in our finite and dis- 

crete space, when constructed from independently generated, but synchronized, 

sequences of dichotomic variables of the same length S projected onto a coordi- 

nate system with D spatial dimensions have a rapidly diminishing probability of 

satisfying this “distant simultaneity” criterion for large t + S/2 and D > 3. The 

critical D = 3 case does allow what we call here DISTANT simultaneity to be 

defined for large (but finite) t + S/2. 

It is important to realize that this DISTANT simultaneity is non-local in the 

usual quantum mechanical sense when we make the interpretation a0 = t,a’ = 

(a’ = x,a2 = y,a3 = z). We intend to prove that the basic “three-vertices” 

correspond to normal relativistic velocity addition in spite of this non-locality of 

events. When we make the interpretation a0 = E, a’ = p’= (a’ = ps, a2 = pY, a3 = 

p,), and impose the 4-event criterion that 4 strings discriminate to the null string, 
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this is equivalent to 3-momentum conservation in appropriate contexts. Although 

relativistic 3-momentum is conserved, there is no guarantee that a 3-vertex is “on- 

shell” in the sense that E2 - p2 = m2 for all the “particles”. This fact is the 

starting point of our finite particle number relativistic scattering theory based on 

relativistic Faddeev-Yakubovsky equations with exactly unitary (flux-conserving) 

solutions. The asymmetry between the representational properties of “position” 

and “momentum” already implied by the “counter paradigm” is the reason why 

an S-matrix type of approach is natural for us. It is also important to realize that 

our distant simultaneity is independent of any concept of causal continuity of the 

type usually associated with special relativity, unless or until we specify in more 

detail how the strings are generated. That program universe-type generators lead 

to acausal, supraluminal connectivity without allowing supraluminal signaling has 

been argued elsewhere[‘3’141 . 

2.6. RATIONAL QUATERNIONS 

Our mapping of bit-strings onto an orthogonal coordinate system with spatial 

dimension D works only for even string length and some set of strings which satisfy 

Eq. 2.25. Further, if S/2 is odd, the indistinguishability condition for D > 1 

implied by Eq. 2.25 cannot be met because two bit-strings with odd Hamming 

measure discriminate to a bit-string with even Hamming measure. Consequently 

the simplest basis system we can use for D > 1 must have strings which are 

multiples of some basis of length four. There are (S!)/($!)2 = 6 candidates for 

the vector basis strings with S = 4, (n = l), but three of these can be obtained 

from the other three by discrimination with the anti-null string, and correspond to 

finite and discrete rotations or reflections of the basis. One allowed basis in three 

plus one dimensions which I have been studying for some time is 

Eo(nS) := n(lll1) = l(nS) 

El(d) := n(lO1O); E2(nS) := n(lOO1); E&!?) := n(llOO) (2.30) 
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Since we saw in Sec. 2.5 that we need at most 3+1 dimensions, we will confine 

ourselves to this system from now on. 

In order to conform to his notation, Clive [Kilmister] suggests that we use 

instead 

K&S) := n(lll1) = l(nS) 

K&S) := n(lOO1); K2(nS) := n(O1O1); K&9) := n(OO1l) K2.32 

Here I have called his suggestion K,(nS), and used my scalar multiplication nota- 

tion. The advantage is that we can then write 

K+S’) = n(i4); Ko(nS) = ~~(1234) 

This move looks good; it does not change anything below, so far as I can see. 

Discrimination of 1, 2, 3 or 4 basis vectors with the anti-null string correspond 

to well known discrete symmetry operations in 3+1 space-time. We list these: 

Eo(nS)’ = 7Eo(nS) := l(d) $ E&S) corresponds to TIME inversion. 

E;(nS)’ = ME;(nS) := l(nS) $ E&S) corresponds to MIRROR REFLEC- 

TION across the jlc plane. 

Ei,j(nS)’ = ReEi,i(nS) := l(nS)@Ei(nS), Ei(nS) corresponds to ROTATION 

through 180° around the Ic axis in either sense. 

Ei,i,k(nS)’ = ‘PEi,j,k(nS) := l(d’) $ El(nS), E~(TLS’), Es(nS) corresponds to 

SPACE inversion - the PARITY operation. 

We emphasize the fact that our construction leads immediately to the dis- 

crete space-time symmetries P, 7 including the degenerate rotation and reflection 

options. Once we have discussed particulate quantum numbers, it will be easy to 

extend our discussion to C and the role CP7 invariance plays in our discrete theory. 
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To go from here to rational quaternions is immediate. Simply define 

Q2 = 1 - &E&S))’ 

which insures that our basis vectors satisfy Eq. 2.2. We can now follow Greider 

by adopting the constraint given by Eq. 2.1; then use the components up given by 

Eq. 2.23 to define a 4-vector given by Eq. 2.3. If the integers we start with do not 

provide a fine enough mesh to describe the phenomena we are modeling, we can 

rescale as explained above; if we wish to replace integer coordinates by rational 

coordinates with a smallest aliquot part l/Nz named in advance we can divide all 

components by this factor. This measure can be fixed in particle physics in the 

context of anticipated experimental resolution. If we wish to use a time-like rather 

than a space-like metric, all we need do is change the sign of Eq. 2.31, 

(ep2)’ = -$(Er(nS))’ - 1 (2.32) 

So far as coordinate description goes, this completes our mapping of bit-strings 

onto quaternions. 

Having gone this far, a temptation for both physicists and continuum mathe- 

maticians is to view this mapping of the bit-string spatial coordinates as an embed- 

ding in R3, and of the quaternion coordinates as an embedding in the space-time of 

special relativity. Then coordinate transformations could be carried through in a 

conventional way. But this would cut the umbilical cord connecting the mapping 

to bit-strings. This can easily be seen by trying to go backward after a coordinate 

transformation and ask what this corresponds to in terms of bit-strings!15’ So we 

have to do more work on coordinate transformations in order to discover which can 

be expressed in terms of bit-string operations and which cannot. This is well worth 

the effort, since the bit-string generated “space” is much sparser in “points” than 

pedestrian “discretizations of the continuum” might lead one to expect. This fact 

could provide us with a start toward understanding in a new way why our theory 
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gives us the limiting velocity of relativity and the non-commutativity of quantum 

mechanics without producing at the same time “self-energies” which go to infinity 

in physically interesting situations, and like horrors. 

3. COORDINATE SYSTEM TRANSFORMATIONS 

3.1. THE COUNTER PARADIGM REVISITED 

In our discussion of the “Counter Paradigm” in DP, pp 90-91, we noted that 
6% 
“‘, we will have to provide more and more precise definitions of these criteria 

[relating 3- and 4- vertices at certain TICKS to the space-time volumes of laboratory 

counters] as the analysis develops.” 

Physicists are accustomed to “looseness of fit” between the mathematics (rep- 

resentational framework, R), the connection to quantitative laboratory measure- 

ment (rules of correspondence, procedural framework, P), and the objectives of the 

process (epistemological framework, E), whatever names they use for these three 

essential ingredients in the modeling of the practice of physics. In my view only 

many recursions through RPE in any order can be expected to yield satisfactory 

results. This looseness generates considerable criticism from some members of 

ANPA wherever I start. As a physicist, I have been more comfortable starting 

with E, roughing out the mathematics R enough to make a first stab at connecting 

to laboratory practice (including the way algebraic formulae and monte-carlo pro- 

grams are used to compare theoretical predictions with digital laboratory results, 

i.e. “counter data”) P, and then recursing to E to get an estimate of where we 

are; I can then ask what it might be profitable to scrap before going on. This has 

landed me in mathematical difficulties, sometimes over my head. 

My initial thoughts about how to connect the “counter paradigm”1161 to Stein’s 

“random walk” model[‘7-‘g1 were very naive. Recently I have been trying to come to 

grips with some of the difficult aspects, - after Karmanov (Ref. 15) had suggested 

that we might be able to go directly from a “Stein-like” model to a discrete version 

of the l+l Dirac Equation without going to an infinitesimal step-length “limit”. 
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The naive counter paradigm amounts to saying that when we have two se- 

quential counter firings a distance L apart with time separation 2 attributed to a 

single particle of mass m, we can associate the invariant interval c2r2 = c2T2 - L2 

between these events with a labeled bit-string. The label, according to rules that 

I am still developing, specifies the mass. If the string a(S; m) is of length S and 

Hamming measure a(,!?; m) = Ia(S;m)l, we take the time to be T = Sh/mc2 

and the distance to be L = [2a(S;m) - S](h/mc) it follows that the velocity 

V = L/T = PC = F - 1. Since, in practice, we cannot measure the dimen- 

sions of a counter to an integral number of Compton wavelengths h/me and the 

time resolution of the counters is much coarser than h/mc2, these constraints define 

an ensemble of strings and not a single string. Part of the problem my lectors have 

with my exposition is that my language has often led them to identify a particle 

with a single labeled string rather than with this context-dependent ensemble. I 

am so used to employing this type of short-hand in going from model to experi- 

mental context and back that I tend to forget how often I need to remind others 

(and occasionally even myself) how inextricably connected this empirical context is 

to the model itself, however “mathematical” the representation of the model may 

look. 

Once my model is spelled out this way, it is easy to think of the ensemble of 

strings as a “random walk”, or relativistic Zitterbewegung, in which the particle 

takes a step either along or against a line connecting the two counters, each step 

executed at the velocity of light, defining a causal trajectory in l+l space-time 

generated by the construction of any particular string as a Bernoulli sequence. 

This is where the trouble starts. Such a model, in the large number case, would 

approximate a relativistic diffusion equation and not the Schroedinger equation. 

One can use it to derive the Lorentz transformations, as Stein did initially, by 

treating the step-length as the uncertainty in position; a rigorous derivation along 

these lines is given by McGoveran in FDP. But this is still a long cry from quantum 

mechanics. 

Stein attacked this problem in his most recent published paper”‘]. He distin- 
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guished quantum events from classical coincidences in such a way that the quantum 

process corresponds to a single step, and in this way was able to prove that in his 

model a Gaussian distribution exhibits the characteristic “wave packet spreading” 

of quantum mechanics. We convinced John Bell that Stein had in this way con- 

structed the solutions of the Schroedinger equation for Gaussian wave packets, and 

I am willing to argue that he did indeed derive the l+l free particle Schroedinger 

equation in this way. Feynman and Hibbs1211 get the relativistic Schroedinger and 

Dirac equations out of a similar model, by taking the counter-intuitive leap of 

treating the step-length as imaginary! We will discuss why that works from our 

point of view on another occasion[221. Adequate treatment requires much more care 

than the naive model we have sketched in this section. A preliminary treatmentt231 

claimed that I had derived the Feynman imaginary step length prescription, but 

this claim should be treated with caution. 

In my first approach to the Lorentz transformations (DP pp 91-93) for the 

interval connecting coordinates (0,O) to (z, t) in the forward light cone (in units 

of h/me for z and h/n-x2 for t) I used z = 2a(S) - S, t = S, and asked for a 

transformation from (z; t) to (z’; t’) which keeps r2 = t2 - z2 = 4a(S)(S - a(S)) 

invariant. This is generated by 

(t’ + z’) = p(t + z) = p 24s); (t’ - z’) = p-l(t - z) = p-9(S - a(S)) 

or in terms of Hamming measure and string length by 

a’(S’) = p a(S); s’ = yps; 7p = k[P + p-l] 

(34 

(3.2) 

The difficulty with this route to the Lorentz transformations, which Karmanov 

realized (Ref. 15) but I d d i not, is that if we are to retain connection to bit-string 

operations ~$’ must be integral.This places a non-linear restriction on the boost 

velocities allowed in Lorentz transformations. No physical experience calls for this 

inhomogeneity, so this early approach (unfortunately now enshrined in DP) must 

be firmly rejected. 
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3.2. WORK IN PROGRESS 

The discussions which grew out of Karmanov’s proposal to derive the Dirac 

equation starting from a “Stein-like” interpretation (Ref. 15) made it clear that in 

order to model the Dirac equation with finite step lengths and not end up with a 

classical diffusion equation, it is necessary to consider two independently generated 

bit-strings. Much of this discussion is reproduced in my contribution to ANPA 

WEST 6 (Ref. 23) and leads to correct conclusions. 

One basic reason why we use two independently generated sequences to dis- 

cuss the l+l Lorentz transformation is that this enables us to keep the string 

length fixed. In the laboratory this corresponds to keeping the distance between 

the counters fixed, and hence is expressible in terms of some fixed number of in- 

variant lengths h/n-x. In contrast to the situation in classical special relativity, 

this provides us with a convenient specification of what we mean by a “rigid rod”. 

We hope to show in another paper that this will enable us to define “mass ratios” 

in terms of relativistic de Broglie wave interference, and to derive the relativistic 

version of Mach’s definition (3-momentum conservation, or Newton’s Third Law) 

as a consequence. We note that defining mass in terms of length measurement 

provides an alternative to Wheeler’s gravitationally based “geometrodynamics” [241 

which could have important conceptual consequences. 

The quantum mechanical system we wish to model with bit-strings is a free 

particle of mass m, energy E, momentum p and hence (in units with the limiting 

velocity c = 1) with velocity ,6 := p/E; further E2 - p2 := rn2. Relative to 

a reference center, it has the square of its total angular momentum (in units of 

h2) given by i( 5 + 1) and the projection of that angular momentum onto some 

reference direction (in units of ti) - the magnetic quantum number called pa 

- given by an integer or half-integer in the range -; 5 pa 5 +t. Once we 

have related these integers to our bit-string notation, we expect to go on to show 

that in this fully discrete context, we can define the appropriate invariants for 

rotations and boosts. For an appropriate constructive algorithm, the statistics of 
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the O's and l’s in the string ensembles which meet the correct boundary conditions 

provide a discrete representation of the solutions of the free particle Dirac and 

relativistic Schroedinger equations. Elsewhere we will discuss the composition of 

angular momenta, scattering theory, coupling constants, mass ratios, . . . . Earlier 

work, based rigorously on the ordering operator calcuZus (FDP) but pretty heuristic 

when it came to physical application (DP, et. seq.) is consistent with the new 

development being worked out here. 

In ordinary one particle quantum mechanics, the space-time reference frame- 

work is assumed understood as the normal classical continuum of special relativity. 

Here we cannot afford that luxury. Instead we start with two bit-strings, a reference 

string R(S) and the string of interest a(S) w ic are subject to the constraints h’ h 

s > R := R(S) > a := a(S) > 0 (3.3) 

and select a third integer or half-integer parameter pa which lies in the range 

-;94&+; (3.4) 

This is related to the two strings by adopting a standard representation for them: 

R(a, pa) = l(% - pa - a)/IO(% + pa)IIl(R - ; + Pa)IIO(no) 

a(& a, pa) = I(% - Pa - a)lll(t + Pa)llO(R - ; + Pa)ll”(nO) (3.5) 

R(a, pa) CD a(& a, pa> = O(: - pa - a)lll(% + Pa)IIl(R - z + Pa)IIO(no) 

Where 

no = s - [I? + ; + pa] > 0 

determines the string length. Note that this parameter is arbitrary so long as the 

other conditions are met. Further, so long as the same permutation of the positions 
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s E 1,2,3 ,..., S is applied to all three strings, the properties of interest for this 

minimal structure are unchanged. It is the existence of these S! permutations that 

lead to a different count for our probabilities than one would obtain by thinking 

of the strings as Bernoulli sequences (see Ref. 4, esp. Appendix III). We expect 

to see in due course that this arbitrariness in the string length can replace the 

accepted arbitrariness of the phase parameter in the quantum mechanical wave 

function. We expect to show that the dependence on string length in our theory 
will be negligible for large enough string lengths in the physical situations currently 

accessible technologically. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Define 

[A-A+]@ , pa) := (; + ~a)(; + 1 - pa) = ;(; + 1) + PU - P: 

[A+A-](a,pa) :=cf - ~a)(: - 1 +~a)= %(i + l>-~a -P: (3.6) 

Hence 

A; := $A-A++A+A-](a,pa) = ;(:+ I)-~: (3.7) 

GOOD HUNTING! 

Much could be accomplished by working out the implications of this definition. 
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